HSC01
clear graphic
clear graphic

Hydrogen sulfide reduces glucose injury in kidney cells

Posted: Wednesday, January 11, 2012 · Volume: XLV · Issue: 1

Share |


B.S. Kasinath, M.D., professor of medicine and a nephrologist with UT Medicine San Antonio, is principal investigator of the study examining hydrogen sulfide’s effect in reducing the scarring of kidney cells.
clear graphic
B.S. Kasinath, M.D., professor of medicine and a nephrologist with UT Medicine San Antonio, is principal investigator of the study examining hydrogen sulfide’s effect in reducing the scarring of kidney cells.clear graphic

Email Printer Friendly Format
 

Contact: Will Sansom, 210-567-2579

SAN ANTONIO (Jan. 2, 2012) — Hydrogen sulfide, a gas notorious for its rotten-egg smell, may have redeeming qualities after all. It reduces high glucose-induced production of scarring proteins in kidney cells, researchers from The University of Texas Health Science Center at San Antonio report in the Journal of Biological Chemistry. The paper is scheduled for print publication in early 2012.

“There is interest in gases being mediators of biological events,” said B.S. Kasinath, M.D., professor of medicine and a nephrologist with UT Medicine San Antonio, the clinical practice of the School of Medicine at the UT Health Science Center. “We found that when we added sodium hydrosulfide, a substance that releases hydrogen sulfide, to kidney cells exposed to high glucose, it decreased the manufacture of matrix proteins that scar the kidney.” Consistent with this finding, enzymes in the kidney that facilitate production of hydrogen sulfide were reduced in mice with type 1 or type 2 diabetes, Dr. Kasinath and his team reported.

Scarring related to end-stage kidney disease
Scarring in the kidney, called renal fibrosis, is a core defect leading to end-stage kidney disease. Nearly half of end-stage kidney disease in the U.S. is related to diabetes, a disease marked by poor regulation of blood glucose.

“We have found a way to decrease matrix protein synthesis, which is a problem in diabetes,” Dr. Kasinath said. Because the studies are limited to cells, the finding should not be extrapolated to the treatment of human diabetic kidney disease, he emphasized.

Future research
The finding paves the way for studies in mice or other animal models. Both the safety and effectiveness of hydrogen sulfide should be established in animal models of kidney disease before human trials can be considered. This precaution is required because hydrogen sulfide, at higher concentrations, is known to be a toxic agent.

Paper of the Week
Journal of Biological Chemistry editors selected the team’s manuscript to be the Paper of the Week, reserved for the top 1 percent of manuscripts in significance and overall importance. About 50 to 100 papers are selected for this recognition from the more than 6,600 the journal publishes each year.

Hak Joo Lee, Ph.D., a postdoctoral fellow in the Division of Nephrology, is the lead author on the study. Dr. Kasinath is the senior author and wishes to acknowledge the contributions of his co-authors.

This work was supported by a grant from the National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases, (DK077295), and a U.S. Department of Veterans Affairs research grant to Dr. Kasinath, the principal investigator.

# # #

The University of Texas Health Science Center at San Antonio, one of the country’s leading health sciences universities, ranks in the top 3 percent of all institutions worldwide receiving federal funding. Research and other sponsored program activity totaled $228 million in fiscal year 2010. The university’s schools of medicine, nursing, dentistry, health professions and graduate biomedical sciences have produced approximately 26,000 graduates. The $744 million operating budget supports eight campuses in San Antonio, Laredo, Harlingen and Edinburg. For more information on the many ways “We make lives better®,” visit www.uthscsa.edu.

 
bottom bar

»printer friendly format...
»view more articles by issue#...
»search articles by keywords...
Arrow - to top
HSC Alert - Sign up today
Calendar of Events
Tell Us Your Story Idea
Submission Guidelines
Arrow - to top